

3D Digitisation Case Studies

Creating 3D digital replicas of medium-to-large scale monuments for Web dissemination

Anestis Koutsoudis BSc, MSc, PhD Computer Science Associate Research Fellow – Grade B' Multimedia Research Group, Athena Research Centre, Xanthi's Division, Greece

Digitisation in three dimensions...

Methods – Sampling procedures | Many approaches → Different needs

Target → Creation of digital subsets that carry geometrical and colour features

from part of our real (analog) world

CAD/CAN architectural documentation Dental laboratory Industrial design Virtual cinematography Virtual cinematography **Cinema - Movies** archaeology ₹ Reverse engineering computer games

Quality assurance

ndustrial metrology

Cultural geomatics heritage

Forensic Documentation

Rapid prototyping robotics

Detecting structural changes topography education Site modelling and

lay outing - Civil engineering

3D Digitisation...A common practice in the CH domain

 Preservation of cultural thesaurus through high quality 3D digital replicas enriched with physicochemical properties mapped on surface

3D Digitisation...A common practice in the CH domain

Creation digital repositories with functionalities such as automated categorisation, retrieval and

3D Digitisation...A common practice in the CH domain

Documentation and study based on simultaneous access to digital replicas → min(artefact_danger

3D Digitisation...A common practice in the CH domain

Data processing and shape analysis for virtual/actual restoration → 3D printing

3D Digitisation...A common practice in the CH domain

Non-photorealistic shading, visualisation → Surface features exaggeration

3D Digitisation...A common practice in the CH domain

Generation of impossible viewpoints

Episkopi, Byzantine Church, Stavri, 12th Centrury, Mani, Greece

3D Digitisation...A common practice in the CH domain

• Orthographic projections → Performing measurements

North view of the monument (Orthogonal Projection)

South view of the monument (Orthogonal Projection)

A good case study to start with...The 3D-ICONS project

Enrich Europeana with novel and high quality 3D replicas of monuments

The 3D-ICONS project primary scope...simplified

The CARARE+ schema

A complex harvesting schema → Full range of descriptive information about monuments, buildings, landscape areas and their digital representations

Supports the description of activities performed to produced digital resources Allows the declaration of relationships between activities and digital resources

Note: The beginning of each line indicates the schema's elements where the relationship is being defined. The arrow points at the element's ID being mentioned

A good case study to start with...The 3D-ICONS project

Enrich Europeana with novel and high quality 3D replicas of monuments

Major 3D digitised monuments spatial distribution

East Macedonia and Thrace, Greece

On 3D content generation pipelines

Aspects of the pipeline applied

A two-stage approach...(20% - 80%)

i. Data Collection

Primary method → Structure-From-Motion / Multi-view Stereovision

Terrestrial & aerial photoshooting (UAV-based)

Complementary methods → 3D model scaling & data quality quantification

- TOF Laser Scanning → Partial capturing of monument's surfaces
- Total station and empirical measurements
 Target positioning, distances between strong surface features

ii. Data Processing

Software Tools Arsenal - Open Source / Commercial

- Generation of primary model (Triangulated mesh)
- Scale 3D model ← Based on comp. methods data
- Multiple mesh/texture resolutions generation
- Publish on-line → Use of appropriate file format
- Derivatives → Orthophotos | Fly-around video sequences | 3D Prints |

Equipment...

i. Terrestrial session

Set of Samsung NX1000 compact DSLRs 20MP 16mm fixed zoom & 22mm-55mm lenses

Set of tripods and custom variable height monopods, white balance boards

Optec Ilris 36D TOF laser scanner

Topcon GPT-3005N total station

ii. Aerial session

UAV specs – Custom design and implementation by Aeroview.gr

Hexacopter | X frame arrangement (Diameter: 80cm)

Naza-M controller board with GPS (Altitude hold, return home)

Payload capability 2Kg | Total Weight 4.7Kg

Flying time 15 mins | Five cell 18.5Volt Li-Po

Two axis (Yaw, Roll) antishock gimbal camera base

FPV – Telemetry functions (Viewpoint, altitude, voltage)

aka THE SHUTTER'S NIGHTMARE

Capture multiple closed loops image sequences at different height levels

Terrestrial (Height range 1.5m - 6m using tripods, monopods) Aerial (Height range 7m - 40m e.g. Rotunda minaret)

Top aerial image sequences capture approach

- Low angle oblique
- Vertical titled

Inevitable → Capture additional image sequences

Due to

- High morphological complexity areas with occlusions
- Concavities
- Details

No safe distance limit was introduced by the Ephorate!
Allowed us to fly close to the monuments (some cases < 3m)

Challenges...

Terrestrial Photoshooting Sessions

People

Inform personnel about our work and what we will be doing Respect visitors → Had to stop data collection phase Avoid long conversations with *experts & scholars*

Accessing the monument from all required viewpoints

Where not possible → Attempt airborne

Weather conditions

Tried to perform data collection always on cloudy days (overcast)
Absence of strong shadows → Overall similar lighting conditions
Useful when simulating different lighting conditions

More challenges...

Aerial Photoshooting Sessions

Wind gusts

Reduce total flying time

Hard to automatically keep a safe distance from target → GPS slow response

Dictates full-manual navigation

Environment – Monument's morphology

Difficult to keep the UAV in pilot's line-of-sight (LOS)
Pilot had to change ground positions to keep LOS
Flight plans complexity → Monument's morphology

The Birds...Alfred was right

Especially seagulls and crows

Flying too close to UAV

Attempt to scare it

Sometimes...Even try to attack the UAV!!!

The tools make the man...

Software arsenal

Primary 3D model generation software

Agisoft PhotoScan Professional edition

Mesh processing, analysis and video generation

Meshlab, X-normal, Blender, Arius 3D Pointstream Editor, Cloud Compare, InstantReality aopt

tool and others

Hardware arsenal

6 x PC systems for data processing

3 x 64GB, 2 x 32GB, 1 x 96GB RAM 4 x Intel i7 4-cores, 1 x 6-cores ATI Radeon R9 280X Geforce GTX 580 Microsoft Windows 7 Pro 64 bit

Digital Technologies in Cultural Heritage & Tourism 30 July – 10 August 2015 - Delphi, Greece

Some numbers...

Total number of images per project and some indication for processing times

Kioutouklou Baba Bekctashic Teke → 1.000 images

Church of the Holy Apostles \rightarrow 4.100

Church of the Acheiropoietos \rightarrow 5.000

Church of St. George (Rotunda) → 9.200

Monastery of Panagia Kalamou → 13.000

Monastery of Panagia Kosmosotira → 4.000

Image Alignment durations: 200 hours (9.200 images - 10.000 points per image) on an Intel i7 6-core 3.4Ghz, ATI Radeon R9 200

Primary Models density: 20M-50M points | Average distance consecutive points: ~ 3 cm

Some numbers...

Scaling models and data quality evaluation

Scaling based on laser scanner data, total station, empirical measurements

Quantify Data quality → Surface deviations → CloudCompare → Laser (TOF) Data VS SFM/MVS Data

No deformations detected → Acceptable for project's requirements → Web dissemination

More can be found in...

A. Koutsoudis et al. *Using Noise Function-Based Patterns to Enhance Photogrammetric 3D Reconstruction Performance of Featureless Surfaces*, Journal of Cultural Heritage, accepted for publication January 2015

A. Koutsoudis et al., Multi-Image 3D Reconstruction Data Evaluation, J. of Cultural Heritage, Vol.15(1), 2014.

A. Koutsoudis et al **Performance Evaluation of a Multi-Image 3D Reconstruction Software on a Low-Feature Artefact**, Journal of Archaeological Science, Vol. 40 (12), December 2013, pp.4450-4456.

F. Remondino et al. Design and implement a reality-based 3D digitisation and modelling project, Int. Con. Digital Heritage, 28

Oct - 01 Nov, Marseille, France, 2013.

Challenges...

Long processing times

Image alignment and dense stereo reconstruction → Extremely demanding CPU/GPU/RAM Viewing Reconstruction Results → Not as immediate as viewing data from a scanner

Exploit Agisoft Photoscan's Python scripting support

Perform dense stereo in multiple small regions

Able to get higher resolution results with less memory requirements during processing

Still unable to get the best out of the image sequences

Big data handling-visualisation inability using current hardware and software

Being more specific...

Using Agisoft Photoscan...How many GBs of RAM needed for my project?

As with any SFM/MVS software tool → Large Image Sets DEMAND Large amounts of RAM

IMAGE SET SPATIAL ALIGNMENT

Depends mainly on the number of images | Image resolution not important

Photos	100	200	500	1000	2000	5000	10000
Memory consumption	500 MB	1 GB	2.5 GB	5 GB	10 GB	25 GB	50 GB

DENSE POINT CLOUD GENERATION

Depends on number of images, resolution, overlapping, quality setting & morphology/shape of object (arbitrary m.)

RAM usage → Presents an almost linear dependency on the number of photos and resolution

For 12Mpix images you should expect something similar to the following

Photos	100	200	500	1000	2000	5000	10000
Lowest quality	25 MB	50 MB	125 MB	250 MB	500 MB	1.25 GB	2.5 GB
Low quality	100 MB	200 MB	500 MB	1 GB	2 GB	5 GB	10 GB
Medium quality	400 MB	800 MB	2 GB	4 GB	8 GB	20 GB	40 GB
High quality	1.6 GB	3.2 GB	8 GB	16 GB	32 GB	80 GB	160 GB
Ultra high quality	6.4 GB	12.8 GB	32 GB	64 GB	128 GB	320 GB	640 GB

Continued...

Producing different resolution models

Export from PhotoScan Meshlab (> Mesh simplification) Blender (> UV unwrap) → Better exploitation of the UV space PhotoScan (Texture Mapping – Back Projection)

End up with four different mesh complexity levels

Lowest Res: <35K with 512² pixels texture map

Low Res: <100K facets with 1024^2 pixels texture map

Medium Res: <300K facets with 4096^2 High Res: aprox. 1M facets with 8192^2 I 3D Thumbnail

| Mobile devices & low bandwidth connections

| Average PCs

High end PCs

d) High

b) Low

c) Medium

a) Lowest

Aim towards Web Dissemination...

Landing page features

Use of the X3DOM Framework

Deliver content on a wide range of platforms Windows, Linuxoids, Mac OS, Android, IOS Patched version to display download progress Several navigation modes

Cheat mode URL: http://goo.gl/Q1GNyr

Aim towards Web Dissemination...

Landing page features

Device-aware content delivery

Desktop / Laptop / Tablet Rendition

Mobile Phone Rendition

Google Cardboard

Cheat mode URL: http://goo.gl/Q1GNyr

Aim towards Web Dissemination...

Landing page features

Provide content for Google Cardboard

Stereoscopic visualisation of 3D content

HTML5 → Read orientation/position sensors

Cheat mode URL: http://goo.gl/Q1GNyr

Derivatives...

On video sequences...

Rendered using Blender

Cycles renderer
Depth of field effects
Barrel distortion
Colour aberration
Vignette
1080p
Non-realistic

Another URL: http://goo.gl/eNIAH6

Church of St. George (Rotunda), Thessaloniki

Paleochristian and Byzantine Monuments in Northern Greece

Church of the Holy Apostles, Thessaloniki

Paleochristian and Byzantine Monuments in Northern Greece

Monastery of Panagia Kalamou in Xanthi

Monastic monuments of Northern Greece

Digital Technologies in Cultural Heritage & Tourism 30 July – 10 August 2015 - Delphi, Greece

Monastery of Panagia Kosmosotira in Feres

Monastic monuments of Northern Greece

Church of the Acheiropoietos

Paleochristian and Byzantine Monuments in Northern Greece

